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1.   INTRODUCTION 

The wave equation [1] is the considerable second-order linear partial differential equation for that can be used. As we 

have seen in physics, such as sound waves, light waves and water waves. It originates in fields like acoustics, 

electromagnetic, and fluid dynamics. The wave equation is a hyperbolic partial differential equation. The wave equation 

in one space dimension can be derived in a variety of different physical settings. 

Most notably, it can be acquired for the case of a string that is vibrating in a two-dimensional plane, with each of its 

elements being pulled in opposite directions by the force of tension [3]. Shi and Wang [2] used Fourier series theory 

coupled with the techniques of real analysis inequalities and investigated the existence and uniqueness of periodic 

solutions for a class of neutral differential equations with delay. In this paper, we derive the solution of wave equation in 

using trigonometric identities. The Fourier series is employed to find a solution. 

2.   PRELIMINARIES 

Consider the wave equation with the initial condition in our problem. The Fourier series and the trigonometric identities 

are used to solve the problem. 

Definition 2.1. If f is Riemann integral over ],[ LL , then the Fourier series of f  is the series  
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Then nA and nB are called the Fourier Coefficients of f . 

Consider the following one dimensional wave equation with BCs and ICs 

PDE: xxtt ucu 2
 

BC: 0),(),0(  tLutu
 

IC: )()0,( xfxu 
,

)()0,( xgxu t 
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Solution: Using separation of variables, Let )()(),( tGxtxu   

xxtt ucu 2 Implies )(')'()('')(),( 2 tGxctGxtxu    
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Now, to find nb since 
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3.   MAIN RESULT 

We next show that  )()(),( ctxSctxRyxu   , where R and S are functions of one variable is the solution of 

xxtt ucu 2  in  x and  t that can be derived by using the Fourier series subjected to the initial 

condition )()0,( xfxu   and  )()0,( xgxu x  by using trigonometric identities.
 

Proof: Since   
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From trigonometric identities, we have: 
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    = (wave travelling to the right) – (wave travelling to the left)  
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Implies )()()0,( 11 xRxfxu  and )()0,( xgxux 
 

Since )()()( 21 xfxfxf  , and 
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Thus, )()(),( 11 ctxRctxftxu  ds )()(),( 22 ctxSctxftxu   

Since ),(),(),( 21 txutxutxu  , we have )()(),( ctxSctxRtxu  .  

This completes the proof. 
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